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Potential flow of segmental jet deflectors 

By H. Y. CHANG AND J. F. CONLY 
San Diego State College, San Diego, California 

(Received 7 July 1970) 

A solution is developed for the deflexion of an inviscid, incompressible, two- 
dimensional jet by a series of segments of arbitrary number, lengths, and angles. 
The Schwarz-Christoffel transformation and free-streamline theory are used. 
Results are calculated for a number of configurations, using an IBM 360 com- 
puter. Excellent comparison is found with several previous calculations for 
special cases. 

1. Introduction 
The deflexion of jets by segmental deflectors is a matter of importance in a 

number of applications. In  hydraulics one encounters water jets deflected by 
gates, flip buckets on spillways (Tinney et al. 1961), or other obstacles. In  aero- 
dynamics air streams are deflected by control surfaces and spoilers. Recently 
there has been considerable interest in jet deflexion by thrust reversers on air- 
craft engines (Chang 1968). Segmental deflectors may also be used for pelton 
wheels. 

The problem of an ideal two-dimensional jet, deflected by a series of straight 
segments, lends itself to solution by the Schwarz-Christoffel transformation. The 
solution relates the deflexion angle of a jet to the lengths of the deflector segments 
and the turning angles between them, as shown in figure 1. Some special cases, 
for one and two segments, have been solved by previous investigators. The one- 
segment deflector was solved by Siao & Hubbard (1953). The two-segment 
deflector was first solved by Sarpkaya (1953), with the turning angles between 
segments limited to 90 degrees; and later by Tinney et al., for any two equal 
turning angles between segments. The present paper gives a solution for any 
number of segments at  arbitrary turning angles. 

2. Conformal transformation of the flow region 
The flow boundary consists of two parts, the free streamline and the segments. 

A pair of transformations are made, as shown in figure 1. The first transforms the 
flow region in the z plane (the physical plane) to the corresponding region in the 
Q plane. The second transforms from the f2 plane onto the upper half of the 
t plane by the Schwarz-Christoffel transformation. Since the flow is from point E 
to point P i n  the z plane, the complex potential of the flow can be obtained in the 
t plane by the superposition of a point source at E and a point sink at F. 
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If the complex potential is w ,  then the complex velocity 

and 

a , - e= l ,  A , - E = t n  

FIGURE 1. Sketch showing the segmental jet deflector and transformation planes. 
(a) z plane, ( b )  R plane, ( c )  t plane. 

in which u and v are the velocity components in the horizontal and vertical 
directions respectively, and q and 8 are the magnitude and inclination of the 
velocity vector. 

maps the flow region of the z plane onto the indicated region of the SZ plane in 
figure 1. In  the Q plane, points of unit velocity (q = P = 1)  E ,  A,, F are on the 
vertical axis, stagnation points (q = 0) A,, A,, . . ., A,, . . ., and An-l are at infinity 

The equation SZ = ln(V/{) = ln(V/q)+iB (2) 
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in the direction of the horizontal axis. Points R,, R,, . . ., R,., . . . , and R,-, represent 
the points of maximum velocities along all the segments in the z plane. 

The Schwarz-Christoffel transformation is employed to map the boundary in 
the SZ plane onto the real axis of the t plane, and the closed region in the SZ plane 
onto the upper half of the t plane. The Schwarz-Christoffel transformation for the 
flow under consideration is 

an 
dt (3) 

const. (t-p,) (t-p,) ... (t-p,) ... (t-pn-l) _ -  - 
(t - al) (t - a,) ... (t - a,) ... (t - [(t - e) (t - a,)]+' 

in which p l ,  p z ,  . . . , pr,  . . ., and pn-l are the t values corresponding to R,, R2 . . ., 
R,, . . . , and R,-,; the a's are the t values corresponding to the A's. Separating the 
above equation by partial fractions, one obtains 

+ ... f- const. +...+----- const.]. (4) 
const. const. +- dSZ 

dt [ ( t  - e) (t - a,)]$ [G t - a, 

In  order to integrate $he above equation, a transformation of variable method is 
used. Considering only the' fist partial fraction 

1 _-  - 
t-a,  t - an-l 

drR, - const. - 
dt (t - a,) [ ( t  - e )  ( t  - a,)]+ 

and letting x = l / ( t  - a,) and integrating, one obtains 

where the C's are constants. Referring to figure 1, when an-l < t < a,, the right- 
hand side of ( 5 )  is real, hence from (2) and (5) 

6 = 0. 

This is along the last segment or L,+l. 

real, hence from (2) and ( 5 )  
Again, when an-2 < t < a,-,, C,-, in ( 5 )  is imaginary while all the others are 

C,_,In I/i = 6. 

Therefore e = c,-,( - 
This is along segment L,-,. 

(6) 
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Similarly, when an--3 < t < an-2, C,-, and Cn-2 are imaginary and 

(C,-1 + C,-J In lli = - (C n-1+Cn-2)]3n- = 8. (7) 

If 8 = 0 along the last segment, the values of 8 along the two preceding segments 
are - a,-1 and - (a,-l + an-2) respectively. Therefore, from (6) and (7)) one has 

C,-I = 2a,-,/n- 

and cn-2 = 2cc,-,/n. 

Hence for the rth segment c, = 2a,/n-. 

Substituting the values of the C's into ( 5 ) ,  it becomes 

Referring to figure 1, with a, > a,-l > ... > a, > ... a2 > a, > e in the t plane, if 
the scale of representation is chosen such that a, - e = 1 ; then there exists a 
real angle U between in- and zero such that a, - t = cos2 U and t - e = sin2 U .  
Thus we have 

t-a,  = sin2U-sin2Ar = sin(U+A,)sin(U-A,), 

[ ( t -  an) (e-ar)I'+ [ ( t - e )  (an-ar)I' 

= cos UsinA,+sin UcosA, = sin(U+A,). 

r=n-1  [sin ( U  + Ar)]ap'T 
,.=I sin(U-A,) ' 

Hence (9)  becomes Q = In 

DeJexion angle 

The deflexion angle q5 corresponds to the inclination of the velocity vector a t  
F where t = co. Putting t = co in (9)) one has 

Since a, > e ,  the imaginary part of (1 1)  is 
r=n-1 

r=1 
ln [i sin A ,  + cos A,] exp (2) = i8. 

r=n-1  r=n-1 
C In [exp(iA,)] exp 

r = l  

Therefore 

This is the inclination of the velocity vector at P when 0 = 0 along the last 
segment. Hence, from figure 2, the deflexion angle is obtained 

2ar r = n - 1  r=n-1 

r = l  5-= 1 
q 5 =  C 01,- C FAT, 

or 
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Segmental lengths 

The segmental length for the rth segment can be obtained from the integral 

The equivalent expression with the angle as the variable for the rth segment is 

for the last segment = l'n 1 * 1 d U .  
An- ,  dU 

FIGURE 2. Sketch-angle relation. 

The complex potential in the t plane is obtained from the superposition of a source 
a t  'e' and a sink at 'f', or 

w = ( V d / m ) [ l n ( t - e ) - l n ( t - f ) ] .  (16) 

Now, 5 = dw/dz 

1 dw 
Y dt 

and f = m, therefore dz = -- dt 

1 V d  dt 1 Vdds in2U 
5 n t - e - 5  n sin2U 

-_____ - 

From (2) V/Y = en, 
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J7 r=n-1 
hence, from (10) 

From (17) and (18), one obtains 

Substituting the above equation into (14), the segmental length is obtained 

(19) 

Equation (19) is an improper trigonometric integral since it has a singularity a t  
U = A,. An approximation method (see appendix) will be used to evaluate the 
integral around the singularity. 

Equations (1 3) and (19) are the resulting equations of the mathematical model. 
By assigning the number of segments, turning angles between segments, and 
values of A,, one can obtain the deflexion angle of jets from (13) and segmental 
lengths from (19). 

3. Results 
An IBM 360 digital computer has been used to evaluate the deflexion angle 

(from (13)) and the segmental lengths (from (19) and the approximation method 
given in the appendix) for segmental deflectors with 1, 2, 3 and 5 segments. 
Various turning angles have also been assigned for each case. Some representative 
results are presented in figures 3 to 6 for one-, two- and three-segment cases. 
Due to the large number of variables involved for the five-segment deflector the 
results are not shown graphically, but some representative ones are tabulated, as 
shown in table 1. 

Input Results 
A A > I  

A,  A ,  4 A, As Li ld  &Id &Id &Id 
0.001 0.05 0.15 0.25 0.35 2.002 1.019 5.644 7.240 
0.001 0.05 0.15 0.25 1.50 1.985 0.976 5,101 2.583 
0.05 0.25 0.35 0.75 0.85 1.394 0.374 2.416 3.374 
0.15 0.35 0.55 0.76 1.20 0.819 0.478 1.770 1.608 
0.25 0.35 0.55 0.75 1-20 0.388 0.501 1.815 1.629 
0.25 0.35 0.55 1.20 1.50 0 3 6 8  0.458 1-302 0.418 

@ 
L,/d degrees 
0.849 67.35 
0.002 56.37 
0.249 53.51 
0.057 46.35 
0.057 45.40 
0.002 38.24 

TABLE 1. Some selected results for the five-segment case 
with a1 = us = aI = u4 = a5 = 15' 

The results for the one-segment deflector (figure 3) have been comparedwith the 
theoretical results obtained by Siao & Hubbard. The agreement is extremely good. 
The theoretical results for two-segment deflectors by Sarpkaya are limited to the 
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FIUURE 3. Deflexion angle as a function of segmental length and turning angle for 
one-segment case. 0 ,  experimental points, u = 90" (Siao & Hubbard). 
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FI~IJRE 4. Deflexion angle as a function of segmental length for two-segment case With 
aI = a, = 30". Experimental points from Copp: 0, L,/d = 1.0; 0,  L,/d = 1.5. 
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case when a, = a, = 90'; those by Tinney et al. are for a, = az. Computer results 
were produced by the authors for these special cases for comparison. Again, the 
agreement is extremely good. Experimental data obtained by Siao & Hubbard 
for the one-segment deflector and those by Copp (1960) for the two-segment 
deflector are also plotted. 
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FIGURE 5. Deflexion angle as a function of segmental length for 

two-segment case with a1 = 30" and a, = 90'. 

The authors are grateful for the assistance in computer work by Mr Joseph J. 
Housman and Mr David T. Zemer of San Diego State College. 

Appendix. Evaluation of integrals 
' Runge-Kutta method ' may be used to evaluate the integrals where they are 

applicable, but i t  is evident that it fails a t  the singular point. The following 
approximate method, which was originally developed by Bryan & Jones (1915) 
will consequently be used near the singular point. As an example, consider the 
integral for the two-segment case 

where U = A ,  is the singular point. 
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FIGURE 6. Deflexion angle as a function of segmental length for three-segment case with 
ul = 60", 01 2 -  - 30' and u3 = 45'. ---, L3/d = 1.0; -, L3/d = 0.5; - . -, L,/d = 0. 

Set U - A, = x, a,/n = ,u and a,/n = v ;  the integral becomes 

sinv x 
When x - + O  (i.e. U +  A,),  sin#X-+p, and we may write F ( x )  = xm &J), where 
m = -p. $(x) is now expended in powers of x, being finite and continuous within 

(A 1) 

Let y, be the value of y[ = F ( x ) ]  when x = h, 

yz be the value of y[ = F ( x ) ]  when x = 2h, 

i,. be the value of y[ = F ( x ) ]  when x = rh. 
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/:ydx (to berequired) = (Plyl+P,y,+ ... +P,yy)h 

= Pl(Ahrn+Bhrn+l+Ch"+2+ ... )h 

+ P,[A(2h)rn + B(2h)rn+l+ C(2h)rn+2+ . . .]h + . . . 
+P,[A(rh)rn+B(rh)rn+l+C(rh)rn+,+ ...I h 

+ (P, + 2"+'P2 + . . . + P+lPy)Bhm+2 

+ (P, + 21"+2P, + . . . + P+,P,)Chrn+3 + . . . . 

= (P1+2rnP,+ ... +rrnp,)Ahrn+l 

But if we integrate (A l), it becomes 

+ .... A(Th)"+l B(,h)rn+2 C(,h)"+3 
+ m+2 + m + 3  m+ 1 

I r y d x  = ---__ 

Therefore 
P1+2rnP,+ ... +r"P, = F+l/rn+l, 

Pl + Zrn+lP, + . . . + rrn+lPr = rm+,/m + 2,  and so on, 

which, when solved, gives the values of P's. 

T has been taken to be 2,  giving then 
In our case the lengths have been calculated for different values of p and v, and 

2m - 2v P -  - 
- (m + 1) (m + 2 )  - ( I  - v) ( 2  - Y) ' 

2h 

The formula derived here, then, will be used in the immediate vicinity of 
A ,  and A,, from A,  to A; say, along the first segment; 0 < A,  < A;; from A; to A ,  
along the first segment; A; < A; < A,; and from A ,  to A; along the second 
segment; A ,  < A: < Qn. The values of the integrals from A; to A; and from 
A; to +r will be evaluated according to the Runge-Kutta method. 

To test the accuracy of this procedure? the integral 

La (a2 

has been evaluated and found to be 1-55, as compared with the true value 
$-n = 1.57. The error is, therefore, about 1-5 yo with these intervals. 
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